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SUMMARY 
A pressure correction formula is proposed for the SIMPLE-like algorithm in order to improve the rate of the 
convergence when solving laminar Navier-Stokes equations when there is rapidly varying pressure. Based 
on global mass conservation, a line average pressure correction is derived by integration of the momentum 
equation for approximate one-dimensional flow. The use of this formula with the SIMPLE-like algorithm 
can rapidly build up the pressure distribution in the region where the pressure undergoes a very large 
change, which normally causes the rate ofconvergence of the SIMPLE or the SIMPLEC schemes to be slow. 
In order to illustrate the technique, the performances of SIMPLE and of SIMPLEC with the average 
pressure correction are investigated for axisymmetric flow past and through a sampler. A comparison of 
these two techniques shows that the average pressure correction proposed in this paper significantly 
accelerates the rate of convergence. 
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1. INTRODUCTION 

Pressure correction methods have been widely used to solve Navier-Stokes equations for 
complex fluid flow problems ever since the pioneering work of Patankar and Spalding,'.' who 
developed the SIMPLE (Semi-Implicit Methods for Pressure Linked Equations) algorithm. 
Several authors have produced variants of this method in order to improve the rate of conver- 
gence of the algorithm, e.g. the SIMPLER2 and SIMPLEC3 methods. The mathematical 
development of SIMPLE-like algorithms concentrates on using the pressure-velocity relation- 
ship from linearized momentum equations. In the SIMPLE and SIMPLEC algorithms the 
pressure correction equations are derived from the continuity equation for each control volume, 
and the solution is achieved by successively predicting and correcting the velocity components 
and pressure, In fact, they provide a pressure correction by use of the continuity equation, which 
is a Poisson-type pressure correction equation. The SIMPLER algorithm starts with an estimate 
for the velocity field rather than for the pressure field. This change is significant, since guessing an 
initial condition for the velocity rather than the pressure is generally much easier. However, the 
pressure correction equation for SIMPLE and SIMPLEC and the pressure equation of 
SIMPLER are derived only at a small control volume. In the SIMPLE and SIMPLEC algo- 
rithms the pressure correction at each grid point is constrained by the local mass conservation, 
which can be satisfied by an incorrect local velocity. For example, if all the initial velocity 
components take zero values, then the local mass conservation is satisfied everywhere except at  
the control volumes on the boundary. Therefore, the global mass conservation is only propagated 
from the boundary to the whole computational domain by an iterative procedure. Because of the 
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Figure 1 .  The sampler facing the wind 

elliptic nature of the pressure correction equation, the larger the computational domain or the 
finer the grid used, the slower the rate of convergence. Further, in complex fluid flows the pressure 
correction equation is not very sensitive to large pressure drops, which results in a slow rate of 
convergence. 

Practical and engineering problems in computational fluid dynamics inevitably involve com- 
plex geometries. For example, particle sampling has received a considerable amount of attention 
due to its importance in the workplace, where the concentration of airborne particles needs to be 
determined.4 Samplers are usually axially symmetrical and are operated by withdrawing fluid 
through a small orifice in the sampler body. Figure 1 shows an example of a disk-shaped sampler. 
The fluid flowing past the sampler divides into two branches. One branch goes around the outside 
of the sampler whilst the other flows into the sampler through the orifice. When the average 
velocity at the sampler orifice is much larger than the free stream velocity, then the fluid which 
enters the sampler will be strongly contracted and undergo a very large pressure drop in the 
vicinity of the orifice. It then forms a cavity-like flow in the chamber of the sampler, and finally it 
is pumped out of the sampler through an exit pipe. At the entrance of the exit pipe the fluid 
undergoes another rapid pressure drop. In order to trace particle paths in the fluid flow, the 
detailed velocity distributions need to be obtained to a high level of accuracy. Owing to the 
complex nature of the flow in such circumstances, much of the previous research on this topic has 
been done experimentally4 or has been based on very simple theoretical models of potential 
f l o ~ . ~ . ~  Only recently has work been done on viscous laminar’ and turbulent 

2. DISCRETIZATION AND THE SIMPLEC ALGORITHM 

Chung and Ogden’O carried out extensive experimental investigations into the aspiration coeffic- 
ient of disk-shaped samplers over a wide range of operating conditions. The sampler under 
investigation in this paper is assumed to take the form of an axisymmetric disc with radius R and 
thickness d, which is followed by a cylindrical sampling chamber of radius rl and length 1. It is 
assumed that the axis of the sampler is aligned with the wind, and that the fluid is aspirated 
through a circular central orifice on the disc with radius ro and pumped out through an exit pipe 
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Figure 2. The mathematical model of the blunt sampler 

of radius r2 whose axis is aligned with the axis of the disc and the cylinder. Cylindrical 
co-ordinates are used in which r is the co-ordinate in the radial direction and z is aligned with the 
axis of symmetry of the sampler, as shown in Figure 2. 

The continuity and momentum equations for an incompressible steady fluid flow are given, in 
vector notation, as 

v-v=o,  (1) 

(2) 

where V=ue,+ we,, V is the fluid velocity vector, u and w are velocity components in the radial 
and axial directions, respectively, p =  PIP, P is the pressure, p is the density of the fluid and v is the 
kinematic viscosity of the fluid. We now consider an arbitrary volume of fluid contained in 
a volume R which has an outer surface S and the unit outward normal to the surface is n. We 
employ the Gaussian theorem, i.e. 

v * vv = - v p  + v (VVV), 

Is [n V dS = 0, 

[ / (V.  n)V dS = -Is I m p  dS + js j n  (vVV) dS, 
S 

(3) 

(4) 

in order to transform the differential forms of equations (1) and (2) into their integral forms. 
The above equations have now to be solved subject to the following boundary conditions. Far 

upstream of the sampler there is a uniform velocity U o ,  and on the sampler there is no slip and the 
velocity is zero. At a large radial distance from the sampler and at  a large distance downstream of 
the sampler, derivatives of all quantities in the r and z directions, respectively, are set identically 
zero. On the axis of symmetry the radial velocity and the derivative of the velocity w in the 
r direction are zero. Further, it is assumed that the average sampling velocity at  the orifice of the 
sampler is Us. In the exit pipe, at  the outlet of the sampler two possible types of boundary 
conditions may be applied: Case I where the velocity profile is specified, and Case I1 where the 
pressure is specified and the normal derivative of the two velocity components is zero. 

In order to obtain accurate results, more mesh points should be employed in, and in the vicinity 
of, the sampler and hence non-uniform grids in both the r- and z-directions are used by means of 
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the following co-ordinate transformation: 

where q and c are new independent radial and axial variables and f and g are two functions which 
may be chosen in order to produce the required distribution of grids. In order to discretize the 
solution domain, a staggered grid which covers the physical domain is used. Finally the 
finite-difference equation for the velocity component u is obtained using equation (4) in the form 

a p u p = a E u E + a W  UW UN + asus+(Pw-P.)(h2h3),Ar, (7) 

where 

and hl =f'(q), h2 =f(q), h3 = g ' ( r ) ,  and Aq and A[ are the mesh sizes in the q and r directions, 
respectively. The quantities ri,, iW, fin and fis are the velocities on the surfaces of the control 
volume and they should be replaced by schemes such as upwind, hybrid and so on. A similar 
expression exists for the w component of velocity. 

An under-relaxation parameter E is introduced into the momentum equations and in the radial 
direction this may be expressed in the form 

Let p* be the current pressure distribution and u* and w* be the velocities resulting from solving 
the radial and axial momentum equations with this pressure distribution. Therefore, we have 

where a,=ap(l+ l/E). 
If p* is the correct pressure distribution, then the velocities u* and w* will satisfy the continuity 

equation (3). However, in general this will not be the case. We therefore introduce corrections 
u', w' and p' as follows: 

u=u'+u*,  w = w ' + w * ,  p = p ' + p * .  (15) 

The relations between the velocity and pressure corrections can be seen by substituting equa- 
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tions (15) into equation (14), which gives 

-~anb)Ub=~anb(Ukb - u c )  + (pk -P: ) ( h 2  h3 )p Ac* (16) 

u: =de(P;-Par (17) 

In the SIMPLEC algorithm, the term xanb(Ukb-U,) is omitted and thus equation (16) becomes 

where 

The pressure correction can then be obtained by substituting all the velocity components into the 
continuity equation for the control volume, and this yields 

a,pL=aEp;E +awp& +aNpf, +aspk+b, (19) 

(20) 

where 

= ( h 2 h 3 ) e u f  Ac-(h2 h 3 ) w  uz +(hl h 2 ) n  w: Aq -(hl h 2 ) s  w$ &* 
The SIMPLEC algorithm consists of the following steps: 

(a) guess the velocity and pressure fields u*, w* and p * ;  
(b) solve the momentum equations to obtain the new values of u* and w*; 
(c) solve for the pressure correction p’ and update the pressure using p=p* +p’; 
(d) update the velocity components u and w by using the velocity correction equations, 
(e) repeat steps (b) to (d) until convergence has been reached. 

The mass residual of every control volume is given by 

RL,,,= C , -  Cw + Cn- C,, (21) 

where C,, C,, C ,  and Cs represent the convection of mass through each face of the control 
volume which surrounds the point where the pressure is located. A measure of the convergence 
used in this paper is the sum of the mass residuals over all the control volumes, namely, 

3. THE AVERAGE PRESSURE CORRECTION BASED ON GLOBAL MASS 
CONSERVATION 

When the SIMPLEC algorithm was used it was found that the numerical technique did not work 
well on this complex fluid flow problem. The rate of convergence of the iterative scheme was 
extremely slow no matter what value of the relaxation factor, E, or distribution of the grids was 
used. Even when a very good guess as prescribed for the initial pressure and velocity fields, the 
rate of convergence was still extremely slow. In both Cases I and I1 the convergence was so slow 
that it would have taken many hours, or even days, of computing time on a large-scale computer 
in order to obtain a convergent solution. The difficulty is that it is not possible to obtain accurate 
velocity and pressure distributions in the vicinity of the orifice of the sampler or near the entrance 
to the exit pipe of the sampler. In fact the rate of convergence was much slower in the vicinity of 
the orifice than near the entrance to the exit pipe. This is because in the vicinity of the orifice the 
shape of the sampler changes very rapidly. The fluid which enters the sampler is accelerated 
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rapidly in order to pass through the orifice, and this is accompanied by a sharp decrease in 
pressure. Then, immediately after the fluid has entered the sampler chamber, there is a sudden 
expansion which causes the fluid to decelerate rapidly. This contrasts with the fluid motion at the 
entrance of the exit pipe, where the fluid simply accelerates. The pressure correction equation is 
not sufficiently sensitive to detect this rapid variation in the geometry of the sampler, and the 
iterative procedure spends many iterations building up the steep pressure gradients and large 
pressure drops. 

The solution of the Navier-Stokes equation in the velocity-pressure formulation depends on 
whether we can produce the correct pressure field. For either the correct or an incorrect pressure 
field we can always obtain a velocity field by solving only the momentum equations, and the final 
correct velocity field can only be obtained if the correct pressure field has been developed. It was 
found that in Case I, where the velocity profile in the exit pipe is specified, divergence of the 
SIMPLEC technique occurs if the computational domain is extended too far into the exit pipe of 
the sampler, and convergence can only be obtained when the outlet boundary is very close to the 
entrance of the exit pipe. This is because the correct pressure field is very difficult to find if only the 
SIMPLEC technique is employed for the pressure correction. When the pressure in the exit pipe 
and upstream is specified, i.e. Case 11, then we have the correct pressure upstream and in the exit 
pipe of the sampler at the beginning of the iteration. Thus, the iterative process has a better 
chance of converging than in Case I, although we found that the rate of convergence was still 
slow. 

From the results obtained in the iterative procedures used in the SIMPLEC technique, we 
observed that the reason for the slow rate of convergence of the iterative procedure is that there 
are large differences between the fluxes of the fluid which enter through the orifice and those in the 
entrance to and the outlet from the exit pipe. This is due to the generation of the incorrect 
pressure gradient and pressure drop in the vicinity of the orifice and at the entrance to the exit 
pipe. Figure 3 shows the typical variation of pressure along the axis of the sampler, which 
illustrates the large change of pressure in the vicinities of the orifice and the entrance to the exit 
pipe. So an enhancement of the rate of convergence for both Case I and I1 is essential if this 
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Figure 3. The pressure distribution on the axis of the sampler 
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method is to be used for studying blunt body sampling. In order for this problem to have a fast 
rate of convergence, the large pressure drop that occurs near the orifice and at the entrance to the 
exit pipe must be generated much faster. 

I t  was observed that both the pressure and the velocity are dominated by changes that occur in 
the z-direction. Therefore, the complicated flow field may be approximately represented as 
a one-dimensional flow in the vicinity of the orifice and at the entrance to the exit pipe of the 
sampler. Then the Navier-Stokes equation (2) can be simplified to 

l d W 2  dp d2W 
+v- 2 dz dz dz2 ’ 

- -- 

where W is the average velocity in the z-direction and p=p/p,  where P is the average pressure. If 
we let W* be the updated average velocity in the z-direction and W’ be the average velocity 
correction, then 

w= w * +  W’. (24) 
If the flux of fluid Q at the outlet of the exit pipe of the sampler is known,” then the velocity 

correction W’ is obtained by using the global mass conservation principle, namely, 

j A p ( W * +  W‘)dS=Q, 

where A is the cross-sectional area of the flow, and this yields the average velocity correction as 

W’ = 

{ A p d S  ’ 

If we let p’ be the average pressure correction, then the correct average pressure is given by, 

p = p* + p’, (27) 

Inserting the values of W and p from expressions (24) and (27) into the momentum equa- 
where I* is the updated value of the average pressure. 

tion (23) yields 

l d W * 2  1 d dp* dp’ d2W* d2W’ 
2 dz 2dz  dz dz dz2 dz2 * 

+- -(2w* W’+ W’2)= ---- +v-+v- -- 

The updated values of the velocity W* and the pressure p* satisfy equation (23) and hence 

l d W * 2  dp* d2W* 
+v- 2 dz dz dz2 ’ 

--=-- 

Combining equations (28) and (29) leads to 

dz 
W’2 w* W’+-+P’-v 

dz 2 

a When the pressure at the outlet is specified then Q is the updated value of the flux of fluid, which is obtained through the 
updated velocity profile at the outlet of the sampler. When the velocity profile is specified at the outlet, then Q is given. 
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and hence 
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Wf2 dW' 
2 dz 

W* W' + - +p' - v - = C = constant. 

Although the dissipation of energy in the vicinities of the orifice and the entrance of the exit 
pipe of the sampler is much larger than elsewhere in the solution domain, the pressure drop is 
a major contributor to the convection of the fluid. Therefore, locally we may neglect the effect of 
viscosity. Further, when the velocity correction is identically zero, then the pressure correction 
and the constant C should be zero. Thence, we finally obtained the average pressure correction p' 
caused by the average velocity correction W', namely, 

The average pressure correction (32) still needs to undergo relaxation, and this correction 
should be added to the updated pressure p * ,  so instead of using equation (32), we employ 

p = p *  +a&. (33) 

It has been found that a value of the relaxation factor a, of about 0 5  is suitable for all the 
calculations performed in this paper and in all similar calculations carried out by the authors. 
This average pressure correction should also be used with the SIMPLE-like algorithm after each 
global iteration. The average pressure correction can be employed on one line or on several lines, 
but the value on the last line, after which the formula is not employed, should be added to all the 
grid nodes located downstream of this line in order to maintain the flux Q. We found that in the 
flow of fluid past and through samplers, the average velocity correction W' had little effect on the 
rate of convergence of the iterative scheme and therefore we did not use expression (24) to correct 
the updated velocity W*. 

4. COMPUTATIONS AND COMPARISONS 

The resulting finite-difference equations of the momentum equation and pressure correction 
equation are solved using a line-by-line tridiagonal-matrix algorithm to solve the momentum 
equations with one sweep and the pressure correction equations with four sweeps. The relaxation 
factor was taken to have a value E = 3, and this produced a stable and fast rate of convergence for 
all the calculations presented in this paper. The treatment of the boundary conditions for the 
pressure correction for both Cases I and I1 followed the recommendations in the paper by Van 
and Raithby3 (for full details of this procedure see that paper). The performance of the SIMPLEC 
algorithm and of the SIMPLEC algorithm implemented with the average pressure correction 
were made for axisymmetric, incompressible, steady-state laminar flow past a disk-shaped 
sampler, as shown in Figure 1. The average pressure corrections were only employed on two lines, 
which were located at the orifice and at the entrance of the exit pipe of the sampler: the physical 
flow situation with the boundary conditions non-dimensionalized with respect to the upstream 
velocity I Uo I and the radius of the sampler R. All the comparisons made between the SIMPLEC 
and the SIMPLEC with the average pressure correction (32) presented in this paper were made 
for the Reynolds number Re = 100, where Re = I Uo I R/v. Further, the dimensions of the sampler 
were taken to be d = 0*02R, ro = 0.1 R, rl  = 0 7 4 R ,  r2  = 0.1 R and I = 0.8 R. The initial guess for the 
non-dimensional velocities are u* = O  and w* = - 1 and for the non-dimensional pressure p* =O. 

Anticipating the need for a finer grid near the orifice of the sampler, we used a non-uniform grid 
with a 131 x 79 mesh to cover the solution domain by suitably choosing the transformation 
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functions f ( q )  and g(C) so that a uniform grid can be employed in computational space, and the 
transformations were also chosen in order to produce continuous scale factors hl  , hz and h3. The 
functions used for the calculations in this paper are 

z = f (q )=  04/24)7147 [e2’07147q1 -ez‘07147(ql-q)], 0 < r  ~ 0 . 1 ,  (34) 

z =f(q)=  (q -ql ) [- lo($ +qql + q f ) +  10*387(q -ql )-0.875], (35) 
z = 0 157 1 1 e 12’73(q-q2)  + 0.84289, 1 .O < r, (36) 

g‘(C)=e5.311sI4-61 I 9 o<z, (37) 

g’([)=l*O, - 0 . 8 ~ ~ ~ 0 ,  (38) 

(39) 
where q1 = 10 Aq, qz =50 Aq, C l  = 80 A[, C2=40 AC and the grid size is Aq=O.Ol and A[=O.O2. 
This grid can cover a region in the physical space for the velocity component u with O c r  <7.145 
and -11.18<z<10.29. 

In Case I, where the velocity profile at the outlet of the exit pipe of the sampler was specified by 
the fully developed parabolic flow, then we have 

0.1 < r c 1.0, 

g’(C)=e5’3115 14-62 1, z < -0.8, 

,=2Us[ 1 -(;>’I. 
The strength of the sampling suction is measured by the velocity ratio U s / U o ,  and there is weak 

(strong) sampling if U J U ,  >( <) I .  When the boundary condition at the outlet of the exit pipe of 
the sampler is the specification of the velocity profile, then Figures 4 and 5 show the convergence 
histories of the mass residual R,,,, and the average velocity at the orifice of the sampler, 
respectively, when the strength of the suction of the sampling is U , / V 0 = 0 5 ,  i.e. a weak sampler, 

0 660 rw 1600 2om 
hTcrt(0rr number 

t 8IMPLEC d t h  ~1).r0l. pro- w w w o t i ~  
-+ 82MPUC 

Figure 4. The convergence histories for the mass residual when U,/U,j=O.S, i.e. weak sampling 
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Figure 5. The convergence histories of the average velocity at the orifice when U,/V0=05, i.e. weak sampling 

when using SIMPLEC and SIMPLEC with the average pressure correction. Figure 4 demon- 
strates that SIMPLEC and SIMPLEC with the average pressure correction have very similar 
rates of convergence for the mass residual, and this is true in all the cases we have considered for 
weak sampling. Figure 5 shows the average velocity at the orifice of the sampler as a function of 
the number of iterations, and when the iterative process has converged this value should be 0-5. It 
is observed that after only about 400 iterations the average velocity (or the flux of fluid which 
enters the sampler) has reached its specified value within an error of about when the average 
pressure correction is used, whereas this value can only be reached after about 2000 iterations 
when using the SIMPLEC algorithm. Therefore, the average pressure correction method has very 
efficiently accelerated the rate of convergence of the average velocity at the orifice (namely the 
sampling flux), although it has had little effect on the rate of convergence of the mass residual. 

We found that as the strength of sampling increases, i.e. as the value of UJU0 increases, then 
the rate of convergence of the SIMPLEC algorithm very noticeably slows down. Figure 6 shows 
the variation of the mass residual as a function of the number of iterations when U,/Uo = 5-0, i.e. 
for strong sampling, when the velocity profile at the outlet is specified. It is observed from the 
convergence history that when the SIMPLEC algorithm is used the mass residual reduces quickly 
during this first 2000 iterations when the mass residual takes a value of 1-231 x lo-’, but after this 
the rate of convergence begins to slow down rapidly. In fact after 4000 iterations the mass residual 
is 7.489 x When using 
the average pressure correction equation (32), we observe that the mass residue continues to 
decrease rapidly as the number of iterations increases. After 2000 iterations the mass residual 
reaches a value of 2.8 x whilst after 4000 iterations it is 1.055 x Therefore, we conclude 
that the rate of convergence has been remarkably improved by adopting the average pressure 

and after 8000 iterations it has only reached a value of 3-283 x 
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Figure 6 .  The convergence histories for the mass residual when U,/U0=5O, i.e. strong sampling 

correction equation (32). We also found that in both cases of weak (U,/U0=0.5) and strong 
(U, /U0=5.0)  sampling, almost the same rate of convergence is achieved when the average 
pressure correction is adopted. 

Corresponding to the case of U,/Uo = 5.0, the average velocity at the orifice of the sampler as 
a function of the number of iterations is shown in Figure 7. We observe that the SIMPLEC 
algorithm produces a very slow rate of convergence for both the average velocity at the orifice of 
the sampler and for the global mass conservation. After 2000 iterations the average velocity 
reaches a value of 2.833, in 4000 iterations it has a value of 3.668 and after 8000 iterations it only 
achieves a value of 4.420. Therefore, it is clear that in order to achieve its correct value, 
U J U ,  = 5.0, an excessively large number of iterations will be required. However, when using the 
average pressure correction only 470 iterations are required for the average velocity at the orifice 
of the sampler, and for the sampled flux, to achieve its correct value within an accuracy of lo-’. It 
is clear that the global mass conservation is satisfied extremely rapidly when using the average 
pressure correction. 

The flow streamlines in the vicinity of the sampler, where the value of the stream function has 
been normalized with respect to U0nR2,  are presented in Figures 8(a) and 8(b), which correspond 
to the velocity fields after 4OOO and 8000 iterations, respectively, as obtained when using the 
SIMPLEC algorithm. These flow patterns represent the velocity fields with a very low level of 
accuracy (see for example the dividing streamline, i.e. the line which should divide the fluid which 
passes into the sampler from that which passes over the sampler, which has the value of 0-05). 
Thus, we conclude that if only the SIMPLEC algorithm is employed, then the rate of convergence 
is so slow that it will take too much CPU to obtain an accurate solution. 

Figures 9(a) and 9(b) present the flow patterns obtained by using the average pressure 
correction to implement the SIMPLEC algorithm. As observed, the result after 2000 iterations is 
almost indistinguishable from those obtained after 4OOO iterations, and the velocity field after 
2000 iterations can be used with confidence when determining the motion of the suspended solid 
particles. 
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Figure 7. The convergence histories for the average velocity at the orifice when U,/U0=55.0, i.e. strong sampling 

Figure 10 presents the pressure distributions on the axis of the sampler as obtained by using the 
SIMPLEC and the SIMPLEC with the average pressure correction after 4000 iterations. The 
results clearly show a very steep pressure gradient and a very large pressure drop in the vicinities 
of the orifice and at the entrance of the exit pipe of the sampler. The pressure distribution 
obtained when using the SIMPLEC algorithm has a much smaller pressure drop than.the correct 
pressure distribution. The SIMPLEC technique cannot produce a large pressure drop at the 
orifice of the sampler very rapidly and this has led to a loss in the flux of fluid which flows through 
the orifice of the sampler. 

As previously observed, the local imbalance in the conservation of the mass of the fluid in each 
control volume is not directly equivalent to the global mass conservation. The source term in 
equation (20) is based on the updated velocity field, and therefore the pressure correction given by 
an incorrect source term cannot produce a correct pressure correction even if its exact solution for 
the pressure correction equation has been obtained. During the propagation of the global mass 
conservation from the boundary to every control volume, mass is lost in every control volume. 
This means that although the mass lost is small in each control volume, the total loss of mass is 
the sum of each of these mass loses over all of the control volumes inside the flow field. Thus, the 
real loss of mass will be much larger than the source term b in equation (20). Therefore, the 
smaller the source term the smaller the pressure correction, and this leads to an extremely slow 
rate of convergence when the pressure drop is very large. Obviously, the average pressure 
correction based on the global mass conservation directly constrains the global mass conserva- 
tion on the line which is perpendicular to the direction of the fluid flow, and therefore the 
acceleration of the rate of convergence will be significant if the flow is dominated by the flow in 
one direction and the present drop is large. 
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Figure 8. The flow streamlines when using the SIMPLEC algorithm: (a) after 4000 iterations; (b) after 8000 iterations 

Case 11, where the pressures upstream and at the outlet of the exit pipe of the sampler are 
specified, has also been investigated. The pressures far upstream and at the outlet of the exit pipe 
of the sampler were taken to be the same as those obtained from Case I when U, /Uo  = 5.0, so that 
the converged solution should have the same velocity field as in Case I. The results show that the 
convergence histories of the mass residuals are very similar (see Figure 6 for both the SIMPLEC 
algorithm and the SIMPLEC with the average pressure correction). The convergence histories of 
the average velocity at the orifice of the sampler as obtained by the SIMPLEC algorithm with the 
average pressure correction is only slightly different from the specification of the velocity profile 
near the start of the iterations in both cases. However, the rate of convergence of the average 
velocity produced by the SIMPLEC algorithm is different from the specification of the velocity 
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Figure 9. Flow streamlines when using the SIMPLEC algorithm with the average pressure correction: (a) after 2000 
iterations; (b) after 4OOO iterations 

profile. When using the SIMPLEC algorithm, Figure 6 shows that when the pressure at  the outlet 
of the sampler is specified a faster rate of convergence is obtained than when the velocity profile at 
the outlet of the sampler is specified. However, when the value of the average velocity is close to 
U J U ,  = 5.0, the rate of convergence is still extremely slow. 

Figure 11 shows the pressure distribution on the axis of the sampler after 4000 iterations when 
the pressure at the outlet of the exit pipe of the sampler is specified. The results show that the 
pressure distributions in the exit pipe of the sampler and in the vicinity of the entrance of the exit 
pipe are more accurate than those obtained in Case I when using the SIMPLEC algorithm. This 
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Figure 10. The pressure distributions on the axis of the sampler after 4OOO iterations when the velocity profile at the outlet 
of the sampler is specified 

is because more accurate values of the pressure at the outlet have been specified. However, the 
pressure drop obtained by the SIMPLEC algorithm at the orifice is still smaller than the correct 
value, which is similar to Case I. The results shown in Figures 6 and 11 again indicate the fast rate 
of convergence when the values of the pressure far upstream and at  the outlet of the exit pipe of 
the sampler are specified and when the average pressure correction is adopted. 
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5. CONCLUSIONS 

The inclusion of the average pressure correction in the SIMPLEC algorithm has successfully led 
to a substantial enhancement in the rate of convergence of the global mass conservation, and has 
also produced an acceleration in the rate of convergence in the local mass residual in both cases 
when the velocity profile and the values of the pressures upstream and at the outlet of the sampler 
are specified. Therefore, a substantial reduction in the cost of obtaining numerical solutions of the 
Navier-Stokes equations is possible. In this paper the average pressure was applied on only two 
lines, which were located at the orifice and at the entrance of the exit pipe of the sampler. 
However, the acceleration of the rate of convergence is significant. It is clear from the example 
considered here that the average pressure correction equation (32) can be used to find fluid flows 
in more general situations when there exists a flow which is dominated by one component of the 
velocity, and that the rate of convergence of the method can be efficiently improved when very 
large pressure drops occur in the flow. 
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